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Abstract
Conventional centralised deep learning paradigms are not
feasible when data from different sources cannot be shared
due to data privacy or transmission limitation. To resolve this
problem, federated learning has been introduced to transfer
knowledge across multiple sources (clients) with non-shared
data while optimising a globally generalised central model
(server). Existing federated learning paradigms mostly focus
on transferring holistic high-level knowledge (such as class)
across models, which are closely related to specific objects of
interest so may suffer from inverse attack. In contrast, in this
work, we consider transferring mid-level semantic knowl-
edge (such as attribute) which is not sensitive to specific ob-
jects of interest and therefore is more privacy-preserving and
scalable. To this end, we formulate a new Federated Zero-
Shot Learning (FZSL) paradigm to learn mid-level seman-
tic knowledge at multiple local clients with non-shared local
data and cumulatively aggregate a globally generalised cen-
tral model for deployment. To improve model discriminative
ability, we propose to explore semantic knowledge augmen-
tation from external knowledge for enriching the mid-level
semantic space in FZSL. Extensive experiments on five zero-
shot learning benchmark datasets validate the effectiveness of
our approach for optimising a generalisable federated learn-
ing model with mid-level semantic knowledge transfer.

Introduction
Deep learning has gained great success in computer vi-
sion and natural language processing, but conventional deep
learning paradigms mostly follow a centralised learning
manner where data from different sources are collected to
create a central database for model learning. With an in-
creasing awareness of data privacy, decentralised deep learn-
ing (McMahan et al. 2017; Wu and Gong 2021b) is more
desirable. To this end, federated learning (McMahan et al.
2017; Li et al. 2020b) has been recently introduced to opti-
mise local models (clients) with non-shared local data while
learning a global generalised central model (server) by trans-
ferring knowledge across the clients and the server. This en-
ables to protect data privacy and reduce transmission cost
as local data are only used for training local models and
only model parameters are transmitted across the clients
and server. There have been a variety of federated learn-
ing paradigms for computer vision applications, such as im-
age classification (Chen and Chao 2021), person reidentifi-
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Figure 1: An overview of federated zero-shot learning with
mid-level semantic knowledge transfer. Each local client
optimises a local model with non-shared local data whilst
a central server aggregates a global model by aggregating
local model parameters. The server model will further be
tested on unseen novel classes.

cation (Sun, Wu, and Gong 2021) and object detection (Liu
et al. 2020).

However, existing federated learning paradigms (McMa-
han et al. 2017; Li et al. 2020b; Wu and Gong 2021b; Chen
and Chao 2021) mostly focus on encoding holistic high-
level knowledge into models for communication across the
clients and the server. Since high-level knowledge is closely
related to objects of interest, this may pose a threat to data
privacy. In contrast, mid-level semantic knowledge (such as
attribute) is usually generic containing semantically mean-
ingful properties for visual recognition (Lampert, Nickisch,
and Harmeling 2013) , so it is not sensitive to objects of
interests. Besides, since the number of attributes are finite
in compositional learning (Yuille 2011) but the number of
classes can be infinite, mid-level knowledge is also supposed
to be more scalable. Therefore, learning mid-level semantic
knowledge transfer for federated learning is important and is
desirable for protecting privacy and improving model scala-
bility.

On the other hand, zero-shot learning (ZSL) is a well-
established paradigm for learning mid-level knowledge. It
aims to learn mid-level semantic mapping between image
features and text labels (typically attributes) using seen ob-
ject categories and then transfer knowledge for recognising
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unseen object categories with the help of the composition of
shared attributes between seen and unseen categories. How-
ever, existing ZSL methods (Pourpanah et al. 2020; Chen
et al. 2021a,b) mostly consider centralised learning scenar-
ios which require to share training data from different label
spaces to a central data collection.

In this work, we formulate a new Federated Zero-Shot
Learning (FZSL) paradigm, which aims to learn mid-level
semantic knowledge in federated learning for zero-shot
learning in a decentralised learning manner. An overview
of FZSL is depicted in Fig. 1. Specifically, we consider
there are multiple local clients where each client has an
independent non-overlapping class label space whilst all
clients share a common mid-level attribute space. Then, we
optimise local models (clients) with non-shared local data
and learn a central generalised model (server) by transfer-
ring knowledges (model parameters) between the clients
and the server. With this paradigm, FZSL unifies federated
learning and zero-shot learning for learning mid-level se-
mantic knowledge in a decentralised learning manner with
data privacy protection. It cumulatively optimises a generic
mid-level attribute space from non-sharable distributed lo-
cal data of different object categories. Instead of aggregating
holistic models like traditional federated learning (McMa-
han et al. 2017) or separating domain-specific classifiers
like recent decentralized learning (Wu and Gong 2021a,b),
we only aggregate generators across the clients and the
server while discriminators are retained locally. This facil-
itates to learn more generalised knowledge and reduce the
number of model parameters for communicating. Further-
more, to improve model discriminative ability, we employ
a vision-language foundation model (e.g., CLIP (Radford
et al. 2021)) to explore semantic knowledge augmentation
to enrich the mid-level semantic space in FZSL. With the
help of a pre-trained richer knowledge space, this seman-
tic knowledge augmentation allows to learn a more generic
knowledge to encode sample diversity as well as improve
model scalability.

Our contributions are: We introduce a new Federated
Zero-Shot Learning paradigm to transfer mid-level knowl-
edge from independent non-overlapping class label spaces
for federated learning. With the formulated baseline model,
we propose to explore semantic knowledge augmentation
from external knowledge to learn a richer mid-level seman-
tic space in FZSL. We conduct extensive experiments on five
zero-shot learning benchmark datasets and demonstrate that
our approach is capable of learning a generalised federated
learning model with mid-level semantic knowledge transfer.

Related Work
Federated Learning. Federated learning (McMahan et al.
2017; Li et al. 2020b,a) is a recently introduced model
learning paradigm aiming to learn a central model (server)
with the collaboration of multiple local models (clients) un-
der data privacy protection. It has been explored in many
computer vision tasks, such as medical image segmenta-
tion (Liu et al. 2021), person reidentification (Wu and Gong
2021b), object detection (Liu et al. 2020), etc. Conven-
tional federated learning approaches, e.g., FedAvg (McMa-

han et al. 2017), learn a sharable central model by aggregat-
ing holistic model parameters among different local mod-
els. To disentangle generic and specific knowledge, recent
approaches (Wu and Gong 2021a; Zhang, Wu, and Yuan
2021; Wu et al. 2021; Sun, Wu, and Gong 2021) propose
to optimise generic feature extractors or generators by de-
coupling discriminators or domain-specific classifiers, but
are still learning holistic class-level knowledge. Different
from existing works, we propose to learn mid-level seman-
tic knowledge (i.e., attributes) for federated zero-shot learn-
ing. Although there have been several seemingly similar fed-
erated zero-shot learning studies (Gudur and Perepu 2021;
Hao et al. 2021; Zhang, Wu, and Yuan 2021), none of
these methods are aimed at bridging the gap between seen
and unseen classes by learning mid-level semantic knowl-
edge. ZSDG (Hao et al. 2021) generates existing categories
by gathering statistics through the server. FedZKT (Zhang,
Wu, and Yuan 2021) and (Gudur and Perepu 2021) are
based on zero-shot knowledge distillation (Nayak et al.
2019) with the purpose of transferring knowledge between
clients and server with no extracted prior information. Un-
like them, our FZSL is learning from multiple indepen-
dent non-overlapping class label spaces, while ZSDG (Hao
et al. 2021) and (Gudur and Perepu 2021) are studying shar-
ing knowledge with a sharing class space. Furthermore, our
FZSL is generalisable and shows stable generalisability on
unseen classes, while FedZKT and ZSDG are only tested
on existing classes. More importantly, all of these methods
are based on class-level knowledge while our FZSL learns to
transfer mid-level semantic knowledge. Besides, we propose
semantic knowledge augmentation from external knowledge
to improve model discriminative ability for FZSL.

Zero Shot Learning. Zero shot learning (ZSL) aims to
recognise unseen object categories leveraging seen cate-
gories for learning consistent semantic information to bridge
seen and unseen categories. Current ZSL methods can
broadly be divided into embedding based methods (Fu et al.
2015) and generative based methods (Xian et al. 2018b).
Embedding based methods transfer from a visual space to
a semantic space and classify unseen categories based on
semantic similarity without any training data. In contrast,
generative based methods learn a projection from a seman-
tic space to a visual space, which enables to turn the zero
shot learning task to a pseudo feature supervised learning
task, alleviating overfitting (Xian et al. 2018b). Existing
ZSL methods are following a centralised learning manner,
while our work proposes a new federated zero-shot learning
paradigm to transfer mid-level knowledge across different
non-overlapping class label spaces with data privacy protec-
tion.

Foundation Models. Foundation models refer to models
trained with a vast quantity of data and can be further used
for various downstream tasks, such as BERT (Devlin et al.
2018), RoBERTa (Liu et al. 2019), CLIP (Radford et al.
2021), etc. These models are usually learned by self-learning
using unlabelled data and are able to predict underlying
properties such as attributes, so they are scalable and po-
tentially more useful than models trained on a limited label
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Figure 2: An overview of federated zero-shot learning with mid-level semantic knowledge transfer. (1) Local model training
process. (2) Local clients upload model parameters to the server and server constructs a global model by aggregating local
model parameters. (3) Local models are reinitialised with central server model. The Semantic Knowledge Augmentation (SKA)
employs external knowledge to further improve the model’s discriminative ability.

space (Bommasani et al. 2021). In this work, we employ
a vision-language foundation model (e.g., CLIP (Radford
et al. 2021)) to explore semantic knowledge augmentation
enriching the mid-level semantic space in FZSL.

Methodology
Problem Definition
In this work, we study Federated Zero-Shot Learning
(FZSL), where each client contains an independent non-
overlapping class label space with non-shared local data
while a central model is aggregated for deployment. Sup-
pose there are N local clients, where the i-th client con-
tains a training set Si = {x, y}, here y ∈ Yi includes
Ni classes. Since each client contains non-overlapping class
space, i.e., {Yi ∩ Yj=∅,∀i, j}, Y1 ∪ Y2 ∪ . . . ∪ YN = Ys.
Meanwhile, each class can be described by an attribute vec-
tor a = {a1, a2 . . . am} and these m attributes are consis-
tent among classes in all clients, i.e. the mid-level attribute
space is shared across clients. The goal of federated zero
shot learning task is to construct a classifier F : X → Y
for Yu ⊂ Y , where Yu is the unseen set and {Yi ∩ Yu =
∅,∀i, j}.

FZSL by Mid-Level Semantic Knowledge Transfer
A Baseline Model. To learn mid-level semantic knowl-
edge transfer for federated learning, we formulate a base-
line model which unifies federated learning and zero-shot
learning in a decentralised learning paradigm. Since genera-
tive based zero-shot learning is capable of generating pseudo
image features according to a consistent and generic mid-
level attribute space, in this work, we employ a representa-
tive f-CLSWGAN (Xian et al. 2018b) as the backbone (in
practice, our approach is compatible to various ZSL back-
bones, such as VAEGAN (Xian et al. 2019) and FREE (Chen
et al. 2021b)). As for federated learning, we use the com-
monly used FedAvg (McMahan et al. 2017). As shown in
Fig. 2, the learning process of the baseline model consists

of three iterative steps, namely local model learning, cen-
tral model aggregation and local model reinitialisation with
central model.

In each local client, with the non-shared local data
Si= {x, y}, the model learning process follows f-
CLSWGAN (Xian et al. 2018b). A generator G(z,ag)
learns to generate a CNN feature x̂ in the input feature
space X from random noise z and a ground truth condition
ag , where each value in ag corresponds with one specific
attribute, e.g. stripes. While a discriminator D(x,ag) takes
a pair of input features x and a ground truth condition ag as
input and a real value as output. Thus, the training objective
of each local client model is defined as:

min
G

max
D
LWGAN + βLCLS , (1)

where β is a hyper-parameter weight on the classifier.
After optimising each local client model for E local

epochs, the local model parameters wi are transmitted to
a central server to aggregate a global model. Following Fe-
dAvg (McMahan et al. 2017), the aggregating process is for-
mulated as:

wt =
1

N · S
∑
i∈NS

wi,t, (2)

where N denotes the number of local clients and t de-
notes the t-th global model iterative update round. S de-
notes the randomly selected clients fraction for each round
(S ∈ [0.0, 1.0]) and NS is the set of selected clients. Note
that the central server only aggregates local model parame-
ters without accessing local data so as to protect local data
privacy. Then, each local model is reinitialised with the cen-
tral model as follows:

wi,t+1 = wt. (3)

This is an iterative learning process (Eqs.(1)-(3)) until T
global model update round. Since the attribute space is con-
sistent among local clients, the learned global generator en-
codes mid-level semantic knowledge. Finally, based on the



attributes from unseen classes, the learned generator from
the global server is used to generate M pseudo image fea-
tures for each unseen classes Yun. A softmax classifier is
then trained under the supervision from pseudo features and
tested for image classification on unseen classes.

Improved Baseline With Selective Module Aggregation.
Although aggregating holistic model parameters following
FedAvg (McMahan et al. 2017) is simple, it is inefficient for
FZSL because the generic mid-level semantic knowledge is
mainly encoded in the generator while the discriminator may
contain knowledge specific to classes in each client. Inspired
by recent approaches (Wu and Gong 2021a; Zhang, Wu, and
Yuan 2021) in federated learning, we improve the baseline
by decoupling the discriminator from the central model ag-
gregation process, i.e., only aggregating the generator in the
central server. This not only reduces the cost for transmitting
model parameters but also facilitates to learn more general-
isable mid-level knowledge. Thus, the central aggregation
in Eq. (2) and the local client reinitialisation in Eq. (3) are
reformulated as:

wG,t =
1

N · S
∑
i∈NS

wGi,t, (4)

wGi,t+1 = wG,t, wDi,t+1 = wDi,t, (5)

where wG,t and wD,t denote model parameters for a gener-
ator and a discriminator, respectively.

Semantic Knowledge Augmentation for FZSL
Although the formulated baseline with selective module ag-
gregation is able to transfer mid-level generic knowledge
in a decentralized learning manner, it still suffers from
sparse attribute and ambiguous attribute separability for lim-
ited data diversity in each client. To resolve this problem,
we propose to explore a vision-language foundation model
(CLIP (Radford et al. 2021) in this work) to explore se-
mantic knowledge augmentation (SKA) to enrich the mid-
level semantic space in FZSL. Since a foundation model like
CLIP contains word embedding knowledge that can sup-
ply information regarding hierarchical relationships among
classes, it can help FZSL to learn richer external knowl-
edge with the sharable common attribute space. In this work,
we introduce class-level semantic knowledge augmentation,
which greatly facilitates the generated feature diversification
in both training and testing stages. Empirically, we observe
that directly concatenating a noise-enhanced CLIP text em-
bedding and an attribute vector is an effective way, which
do not require extra learnable parameters and can alleviate
overfitting on seen classes.

In our semantic knowledge augmentation, as shown in
Fig. 2, we simply combine a default prompt ‘a photo of
a’ with class names and use this sentence as the input to
a CLIP text encoder (Radford et al. 2021). We then further
add the gaussian noise zc ∼ N(0, γ) to the output text em-
bedding ac so as to enrich the semantic space and to better
align with the instance-wise diversified visual space, where
each class-level semantic can always correspond to differ-
ent samples with various poses and appearances in visual

space. The semantic augmented attribute is the concatena-
tion between noise-enhanced text embedding and ground
truth manual annotation attribute labels ag . This semantic
augmentation process can be formulated as follows:

aSKA = [ac ⊕ zc,ag], (6)

where ⊕ is the element-wise summation. During FZSL
model training, the CLIP text embedding of seen class
name is utilised as external knowledge to construct semantic
knowledge augmented attribute aSKA and further generate
image features in each local client. The discriminator con-
dition keeps ag to distinguish between the real distribution
and the pseudo distribution.

Most importantly, in the testing stage, instead of gener-
ating pseudo image features based on the same attribute ag

for each class as in conventional ZSL (Xian et al. 2018b,
2019; Chen et al. 2021b), the SKA module supplies diversi-
fied attribute aSKA for each class. The gaussian noise zc in
aSKA can help explore the rich information in CLIP text en-
coder so to enrich the attribute space. Overall, our semantic
knowledge augmentation can increase inter-class separabil-
ity as well as supply diversified attribute space by only using
the text information of the class name.

Experiments
Datasets. To evaluate the effectiveness of our approach,
we conduct extensive experiments on five zero-shot bench-
mark datasets, including three coarse-grained datasets: (An-
imals with Attributes (AWA1) (Lampert, Nickisch, and
Harmeling 2013), Animals with Attributes 2 (AWA2) (Xian
et al. 2018a) and Attribute Pascal and Yahoo (aPY) (Farhadi
et al. 2009)); and two fine-grained datasets (Caltech-UCSD-
Birds 200-2011 (CUB) (Wah et al. 2011) and SUN At-
tribute(SUN) (Patterson and Hays 2012)). AWA1 is a coarse-
grained dataset with 30475 images, 50 classes and 85 at-
tributes, while AWA2 shares the same number of classes
and attributes as AWA1 but with 37322 images in total.
The aPY dataset is a relatively small coarse-grained dataset
with 15339 images, 32 classes and 64 attributes. CUB con-
tains 11788 images from 200 different types of birds anno-
tated with 312 attributes, while SUN contains 14340 images
from 717 scenes annotated with 102 attributes. We use the
zero-shot splits proposed by (Xian et al. 2018a) for AWA1,
AWA2, aPY, CUB and SUN ensuring that none of training
classes are present in ImageNet (Russakovsky et al. 2015).
All these five datasets are composed of seen classes set and
unseen classes set. In decentralised learning experiments, we
evenly split the seen classes set randomly to four clients.
Note, both seen classes and unseen classes share the same
attribute space in each dataset.

Evaluation Metrics. In FZSL, the goal is to learn a gener-
alisable server model which can assign unseen class labelYu
to test images. Following commonly used zero-shot learning
evaluation protocol (Xian et al. 2018a), the accuracy of each
unseen class is calculated independently before divided by
the total unseen class number, i.e., calculating the average
per-class top-1 accuracy of the unseen classes.



Method AWA2 AWA1 aPY CUB SUN

Centralised
CLSWGAN (Xian et al. 2018b) 67.4 66.6 37.7 56.8 60.3
VAEGAN (Xian et al. 2019) 60.0 53.8 17.8 46.4 58.2
FREE (Chen et al. 2021b) 67.7 68.9 42.2 60.9 61.3

Decentralised

CLSWGAN+FedProx (Li et al. 2020a) 61.3 58.4 34.0 53.1 59.3
CLSWGAN+MOON (Li, He, and Song 2021) 61.0 58.6 33.2 55.1 59.5
FL-VAEGAN 48.9 44.0 16.4 43.6 56.2
FL-VAEGAN+SMA 50.4 44.6 25.9 46.0 59.4
FL-VAEGAN+SMA+SKA 60.1 58.2 19.6 52.6 61.2
FL-FREE 60.9 59.8 25.9 54.5 56.4
FL-FREE+SMA 61.4 61.1 27.4 55.4 57.0
FL-FREE+SMA+SKA 68.4 68.4 32.0 60.7 60.5
FL-CLSWGAN 61.6 58.5 33.8 53.8 59.5
FL-CLSWGAN+SMA 62.8 61.7 38.4 55.5 59.4
FL-CLSWGAN+SMA+SKA 69.0 70.6 47.1 59.4 66.5

Table 1: Comparing our approach with other methods on AWA2, AWA1, aPY, CUB and SUN for federated zero-shot learning.
Top-1 accuracy is reported on all experiments. SMA denotes selective module selection while SKA denotes semantic knowledge
augmentation. Bold and underline represent the best and the second best performance in each baseline.

Implementation Details. In our approach, we employed
a frozen ResNet-101 (He et al. 2016) pretrained on Im-
ageNet (Russakovsky et al. 2015) as the feature extrac-
tor and constructed our baseline model with a generator
and a discriminator for each client respectively following
the representative generative zero-shot learning work (Xian
et al. 2018b). Further, we employed a frozen pretrained
CLIP (Radford et al. 2021) text encoder, a ViT-Base/16
transformer, to supply class-name-based text embedding for
each client. All clients share the same model structure while
the server aggregates local model parameters to construct
a global model. For the improved baseline with selective
module aggregation (SMA), only the generator from local
client are aggregated. As for further improved with seman-
tic knowledge augmentation (SKA), both the generator and
text-enhanced module are aggregated to the server. Each
client contains local non-overlapping classes from the seen
classes set and the aggregated server model is tested on the
unseen classes set. By default, we set the number of local
clients N=4 and randomly client select fraction S=1. Gen-
erated feature number M and classifier weight β follows the
original ZSL work (Xian et al. 2018b). We empirically set
batch size to 64, maximum global iterations rounds T=100,
maximum local epochs E=1. For each local client, we used
Adam optimizer with a learning rate of 1e−3 for CUB,
2e−4 for SUN and 1e−5 for the others. Noise augmentation
γ is set to 0.1 empirically. Our models were implemented
with Python(3.6) and PyTorch(1.7), and trained on NVIDIA
A100 GPUs.

Federated Zero-Shot Learning Analysis
There are no existing works discussing mid-level se-
mantic knowledge transfer in federated learning, so be-
sides our baseline model (CLSWGAN (Xian et al. 2018b)
with FedAvg (McMahan et al. 2017)) donated as FL-
CLSWGAN, we also implemented a traditional ZSL method
VAEGAN (Xian et al. 2019) and a recent ZSL method
FREE (Chen et al. 2021b) with FedAvg (McMahan et al.

2017) denoted as FL-VAEGAN and FL-FREE respectively
for comparison. Further, the proposed SMA and SKA are
implemented on three baselines respectively, where the gen-
erality and compatibility of SMA and SKA can be demon-
strated. Note, when implementing SMA to FREE, feature re-
finement module will also be aggregated to the server which
will be used during testing. All compared methods are in-
ductive where only attribute information of unseen classes
are used for training the classifier and unseen images are not
used during training.

From Table 1, we can see that: (1) Compared with the
centralised baselines, the formulated decentralised baselines
(FL-CLSWGAN, FL-VAEGAN, FL-FREE) yield com-
pelling performance, which shows the effectiveness of the
proposed paradigm for learning globally generalised model
whilst protecting local data privacy; (2) With selective mod-
ule selection (SMA), overall the performance of the base-
lines are improved (3.4% in FL-VAEGAN, 1% in FL-FREE
and 2.1 % in FL-CLSWGAN on average), which verifies
that learning a generic generator and decoupling the dis-
criminator from central aggregation can facilitate mid-level
semantic knowledge transfer in FZSL; (3) With semantic
knowledge augmentation (SKA), our approach significantly
improves the baselines by 8.5% in FL-VAEGAN, 6.5% in
FL-FREE and 9.1% in FL-CLSWGAN on average, which
validates the effectiveness and generality of SKA in FZSL;
(4) Comparing with other federated learning approaches,
such as FedProx (Li et al. 2020a) and MOON (Li, He,
and Song 2021), our approaches achieve significantly bet-
ter performance, showing the importance of learning mid-
level semantic knowledge for FZSL. In the following con-
text, the decentralised baseline donates CLSWGAN (Xian
et al. 2018b) with FedAvg (McMahan et al. 2017) since it
achieves overall the best performance on our experiments.

Local Training vs. Decentralised Learning
To verify the effectiveness of the formulated federated zero-
shot learning paradigm, we separately train four individ-



Settings Methods AWA2 AWA1 aPY CUB SUN

Local Training

Client 1 49.0 47.8 23.2 42.4 50.6
Client 2 37.1 38.7 22.8 40.5 52.1
Client 3 40.2 41.1 34.3 40.2 49.8
Client 4 53.0 51.9 26.3 40.2 50.4
Average 44.8 44.9 26.7 35.5 50.7

Decentralised Baseline 61.6 58.5 33.8 53.8 59.5
Baseline+SMA+SKA 69.0 70.6 47.1 59.4 66.5

Centralised Baseline (Joint) 67.4 66.6 37.7 56.8 60.3

Table 2: Comparing local training (individual clients) and decentralised learning (baseline and baseline+SMA+SKA). Top-1
accuracy in percentage on unseen classes. Baseline donates CLSWGAN (Xian et al. 2018b) with FedAvg (McMahan et al.
2017)

GT CLIP AWA2 AWA1 aPY CUB SUN

3 7 62.8 61.7 38.4 55.5 59.4
7 3 70.1 72.4 48.2 42.2 54.4
3 3 69.0 70.6 47.1 59.4 66.5

Table 3: Baseline+SMA with different attribute variations.
GT means dataset supplied annotated attributes. SKA means
our proposed semantic augmentation with a CLIP text en-
coder.

(CL)SKA ALSKA AWA2 AWA1 aPY CUB SUN
7 7 62.8 61.7 38.4 55.5 59.4
3 7 69.0 70.6 47.1 59.4 66.5
7 3 62.8 64.4 44.8 54.4 61.6
3 3 69.3 70.7 46.2 59.0 65.6

Table 4: Baseline+SMA with different semantic augmen-
tation variations. CLSKA means class-level semantic aug-
mentation. ALSKA means attribute-level semantic augmen-
tation.

ual local models (Xian et al. 2018b) with local client data
and compare with decentralised learning models. Note that
the performance are tested on the same unseen classes for
all compared methods. As shown in Table 2, the decen-
tralised baseline model significantly outperforms all indi-
vidual client models and their average. This shows that the
federated collaboration between the localised clients and the
central server model facilitates to optimise a generalisable
model in FZSL. Furthermore, baseline+SMA+SKA even
surpasses the performance of the centralised joint-training
baseline, which further verifies the effectiveness of our im-
proved baseline for FZSL.

Effect of Semantic Knowledge Augmentation
As shown in Table 1, the performance of the baseline model
can be significantly improved with semantic knowledge aug-
mentation. To show the impact of semantic knowledge aug-
mentation on FZSL, we further analyse the results both
quantitatively and qualitatively. Quantitatively, we report ex-
perimental results in Table 3 for the baseline+SMA with and

￪0.9
￪ 4.0
￪ 11.2
￬1.6
￪ 0.8
￪ 27
￪ 2.9
￪ 11.9
￪ 7.0
￬1.9

Figure 3: tSNE of unseen classes on AWA2 for base-
line+SMA (left) and baseline+SMA+SKA (right). The same
colour implies the same class. Circle and cross means the
generated distribution and real unseen distribution, respec-
tively. The number in the caption means increase or decrease
percentage for each class after implementing SKA. The clas-
sifier trained on generated pseudo distribution is tested on
the unseen real distribution.

without SKA. It can be observed from Table 3 that CLIP
text embedding alone can supply discriminative information
in three coarse datasets (AWA1, AWA2 and aPY) but lack
discriminative ability in the other two fine-grained datasets.
The combination of the ground truth annotation and CLIP
text embedding, which is our SKA setting, works the best
on average. Qualitatively, the tSNE visualisations of AWA2
unseen classes for baseline+SMA before and after imple-
menting the semantic knowledge augmentation are shown
in Fig. 3. It can be seen that with SKA, the generated distri-
bution has a larger inter-class distance as shown in the red
box. This larger inter-class distance significantly improves
coarse-grained classification accuracy, which is consistent
with the conclusion of FREE (Chen et al. 2021b).

Variation of Semantic Knowledge Augmentation
We do variations on the SKA in two directions: (1) In a more
concrete attribute level and (2) text embedding from other
text encoders.

Attribute-Level Semantic Knowledge Augmentation.
To further show whether an attribute text will bring more dis-
criminative information to FZSL, we employ the attribute-
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Figure 4: Ablation study on (a) client number, (b) client fraction, (c) local steps

Text Encoder AWA2 AWA1 aPY CUB SUN
7 62.8 61.7 38.4 55.5 59.4

LM BERT 63.4 63.8 41.1 54.6 60.9
RoBERTa 65.4 64.6 41.6 54.7 61.0

VLP DeFILIP 74.1 75.5 49.4 58.2 64.2
CLIP 69.0 70.6 47.1 59.0 65.6

Table 5: In comparison with Baseline+SMA, evaluation with
the text embedding of two Language Models (LM) and two
Vision-Language Pretrained models (VLP) are reported.

level semantic augmentation (ALSKA) and compare with
the proposed class-level semantic augmentation ((CL)SKA).
we reconstruct the input sentence of a CLIP text encoder
with a superclass name and a random selected activated at-
tribute from a target class. For example, for class ‘beach’, the
input sentence can be constructed as ‘a photo of a swimming
scene.’, where ‘scene’ is a superclass name and ‘swimming’
is a random selected positive attribute for class ‘beach’. Fur-
ther, we combine ALSKA and (CL)SKA by constructing
the input sentence of CLIP text encoder as ‘a photo of a
{attribute} {class name}.’where {attribute} is one of the
activated attributes in {class name}. As shown in Table 4,
we can see that: (1) Both class-level semantic augmenta-
tion (SKA) and the attribute-level semantic augmentation
can supply discriminative information, which proves the ef-
fectiveness of our structure learning from text based exter-
nal knowledge; (2) Comparing with (CL)SKA, the ALSKA
is still limited in the CLIP text encoder. How to explore the
fine-grained information from foundation model needs to be
further explored and we leave this for the future work.

Semantic Knowledge Augmentation with Other Text En-
coder. FZSL can gain benefit from a large scale pre-
trained text encoder. We naturally interested in whether
other language models or visual language pretrained mod-
els can bring similar benefits. We therefore compare two
large scale language models BERT (Devlin et al. 2018) and
RoBERTa (Liu et al. 2019); and the text encoder of a vision-
language pretrained model DeFILIP (Cui et al. 2022). BERT
and RoBERTa are bidirectional encoder trained on 16GB
and 161GB text corpora respectively. DeFILIP is a variation
of CLIP (Radford et al. 2021) which aims to explore fine-
grained information in a more data efficient method. All of
three methods will calculate the embedding of the whole in-
put sentence, where we fed in the same sentence as our SKA.

As shown in Table 5, we can see that: (1) Both LM and VLP
text encoder can bring benefits (except LM model on CUB)
comparing with baseline, which can demonstrate the effec-
tiveness and generality of the proposed SKA structure. (2)
FZSL with VLP achieves better results compare to LM. The
reason is mainly that these models are pretrained on image
set and are prone to achieve the alignment between visual
and semantic distribution. (3) DeFILIP, a fine-grained vari-
ation of CLIP, achieves the best result among different text
encoders. Interestingly, we find that DeFILIP with attribute-
level SKA can achieve 59.8% and 65.6% on CUB and SUN
respectively (cf. 58.2% and 64.2% on CUB and SUN with
class-level SKA), which implies that the fine-grained infor-
mation from DeFILIP can be further explored with an ap-
propriate mining method.

Further Analysis and Discussion
Client Number K. Fig. 4(a) compares central server ag-
gregation with different numbers of local clients, where K=
1,2 and 4 represent seen classes of the dataset is randomly
split to 1,2 and 4 clients on average respectively. We can see
that the FZSL performance decreases when implementing to
increase number of clients, which implies greater difficulty
with larger number of clients with less data variety.

Client Fraction S. Fig. 4(b) compares FZSL with differ-
ent client fraction. We can see that a smaller number of
fraction is inferior to collaboration with larger fraction of
clients, which demonstrates that collaboration among multi-
clients can further contribute to the generalisation ability of
the server model.

Client Local Step E. Fig. 4(c) compares FZSL with dif-
ferent client local steps E which influences the commu-
nication efficiency. Overall, the performance on different
datasets shows relatively stable trends whilst on SUN, the
performance decreases when E increases due to the accu-
mulation of biases in local client.

Conclusion
In this work, we introduced a new Federated Zero-Shot
Learning paradigm to explore mid-level semantic knowl-
edge transfer for federated learning. We formulate a baseline
model based on conventional zero-shot learning and feder-
ated learning, and then further improve the baseline model
with selective module aggregation and semantic knowl-
edge augmentation. Extensive experiments on five zero-shot



learning benchmark datasets examine the effectiveness of
our approach.
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